Fredholm Operators and the Family Index
نویسنده
چکیده
منابع مشابه
On the space of Fredholm operators
We compare various topologies on the space of (possibly unbounded) Fredholm selfadjoint operators and explain their K-theoretic relevance.∗ Introduction The work of Atiyah and Singer on the index of elliptic operators on manifolds has singled out the role of the space of bounded Fredholm operators in topology. It is a classifying space for a very useful functor, the topological K-theory. This m...
متن کاملOn a Spectral Flow Formula for the Homological Index
Consider a selfadjoint unbounded operator D on a Hilbert space H and a one parameter norm continuous family of selfadjoint bounded operators {A(t) | t ∈ R} that converges in norm to asymptotes A± at ±∞. Then under certain conditions [RoSa95] that include the assumption that the operators {D(t) = D + A(t), t ∈ R} all have discrete spectrum then the spectral flow along the path {D(t)} can be show...
متن کاملThe Index Formula of Douglas for Block Toeplitz Operators on the Bergman Space of the Ball
The index formula of Douglas is a formula which expresses the index of a Fredholm Toeplitz operator with a discontinuous symbol as the limit of the indices of a family of Fredholm Toeplitz operators with continuous symbols. This paper is concerned with Toeplitz operators on the Bergman space A of the unit ball of C. The symbols are supposed to be matrix functions with entries in C+H∞ or to be c...
متن کاملA few remarks about operator theory, topology, and analysis on metric spaces
Some basic facts about Fredholm indices are briefly reviewed, often used in connection with Toeplitz and pseudodifferential operators, and which may be relevant for operators associated to fractals. Let H be a complex infinite-dimensional separable Hilbert space, which is of course unique up to isomorphism. Let B(H) be the Banach algebra of bounded linear operators on H, and let C(H) be the clo...
متن کامل